Yuhang's Blog

Luogu P3256:半平面交

2021-01-11 Coding

思路和现有的题解都有些差别,所以稍微写一下。

第$i$辆赛车在$t$时的路程是$x_i(t)=v_i t + x_{0i}$,每辆赛车的$x-t$图是一条直线。在同一坐标系画出所有赛车的$x-t$图,则在任意时刻$t$,领先的赛车就是高度最高的那条直线。对于所有$t$,$\max_{i} x_i(t)$构成一条折线。不难发现这条折线就是$x_i(t) \ge v_i t + x_{0i}$的半平面交的边界。 观察到这里就意识到半平面交是可以做的了。我们需要求的是在所有在某个时刻领先的赛车,其实就是对这条折线的形状作出了贡献的所有的直线。第一种情况,这自然包括在某个区间上成为了折线的直线,这对应的是某辆赛车在某个时间段保持领先。但还需要注意第二种情况,可能某辆赛车只在某个时间点(无限短暂地)保持领先,我们也认为它符合条件(正如样例提供的)。事实上第二种情况包含了第一种情况,因此这促使我们考虑折线上的所有拐点。对于所有直线,如果折线的某个拐点出现在这条直线上,那么这条直线对应的赛车就符合获奖条件。 考虑一下时间复杂度。尽管最坏情况拐点数量会几乎等于直线数量,理论时间复杂度是$O(n^2)$。但除非是非常特殊的数据,拐点数量都远小于直线的数量,所以这种做法实测比纯$O(n^2)$算法快不少。 精度问题:无脑开long doubleinf1e50eps1e-10可过。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <bits/stdc++.h>
using namespace std;
#define rep(i,from,to) for(register int i=(int)(from);i<=(int)(to);++i)
#define rev(i,from,to) for(register int i=(int)(from);i>=(int)(to);--i)
#define For(i,to) for(register int i=0;i<(int)(to);++i)
typedef long long ll;
#define double long double
inline ll read(){
ll x=0; ll sign=1; char c=getchar();
while(c>'9' c<'0') {if (c=='-') sign=-1;c=getchar();}
while(c>='0' && c<='9'){x=(x<<3)+(x<<1)+c-'0';c=getchar();}
return x*sign;
}

const double eps=1e-10;
#define inf 1e50
#define N 11234

int dcmp(double x) {
if (fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
struct Point {
double x, y;
Point(double x=0, double y=0):x(x), y(y) { }
};
typedef Point Vector;
Vector operator+ (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator- (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator* (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator/ (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator< (const Point &a, const Point &b) {
return a.x<b.x (a.x==b.x && a.y<b.y);
}
bool operator== (const Point &a, const Point &b) {
return a.x==b.x && a.y==b.y;
}
double Cross(const Vector &A, const Vector &B) {
return A.x*B.y - A.y*B.x;
}
double Dot(const Vector &A, const Vector &B){
return A.x*B.x+A.y*B.y;
}
double Length(const Vector &A) {
return sqrt(Dot(A, A));
}

struct Line {
Point P;
Vector v;
double ang;
int index;
Line() {}
Line(Point P, Vector v, int index):P(P), v(v), index(index) { ang = atan2(v.y, v.x); }
bool operator< (const Line &L) const {
return ang < L.ang;
}
double value(double x) {
return P.y + (x - P.x) * v.y / v.x;
}
};
bool OnLeft(Line L, Point p) {
return Cross(L.v, p-L.P) > 0;
}
Point GetIntersection(Line a, Line b) {
Vector u = a.P-b.P;
double t = Cross(b.v, u) / Cross(a.v, b.v);
return a.P+(a.v*t);
}

void HalfplaneIntersection(vector<Line> &L, vector<Point> &ret) {
sort(L.begin(), L.end());
Point *p = new Point[N];
Line *q = new Line[N];
int first, last;
q[first=last=0] = L[0];
for(int i = 1; i < L.size(); i++) {
while(first < last && !OnLeft(L[i], p[last-1])) --last;
while(first < last && !OnLeft(L[i], p[first])) ++first;
q[++last] = L[i];
if (!dcmp(Cross(q[last].v, q[last-1].v))) {
--last;
if(OnLeft(q[last], L[i].P)) q[last] = L[i];
}
if (first < last) p[last-1] = GetIntersection(q[last-1], q[last]);
}
while(first < last && !OnLeft(q[first], p[last-1])) --last;
if (last - first <= 1) return;
p[last] = GetIntersection(q[last], q[first]);
for(int i = first; i <= last; i++) {
if (p[i].y >= inf) continue;
ret.push_back(p[i]);
}
}

double b[N], k[N];
vector<Point> ret;
vector<int> ans;
vector<Line> L;

int main() {
int n = read();
rep(i, 1, n) cin >> b[i];
rep(i, 1, n) {
cin >> k[i];
Line l = Line(Point(0, b[i]), Vector(1, k[i]), i);
L.push_back(l);
}
L.push_back(Line(Point(0, 0), Vector(0, -1), 0));
L.push_back(Line(Point(0, 0), Vector(1, 0), 0));
L.push_back(Line(Point(inf, 0), Vector(0, 1), 0));
L.push_back(Line(Point(0, inf), Vector(-1, 0), 0));

HalfplaneIntersection(L, ret);

for(auto l : L) {
if (l.index == 0) continue;
for(auto p : ret) {
if (!dcmp(l.value(p.x) - p.y)) {
ans.push_back(l.index);
break;
}
}
}
sort(ans.begin(), ans.end());
cout << ans.size() << endl;
For(i, ans.size()) {
if (i) cout << " ";
cout << ans[i];
}
cout << endl;

return 0;
}
This article was last updated on days ago, and the information described in the article may have changed.